use v6; # The problem we have is that for floating point formatting, sprintf needs # accurate powers of 10, and nqp::num_n(1e1, $exp) is a call to the libc pow() # function, and *that* may not always be accurate, with the result that we # generate incorrect formatting. pow() is accurate (for all positive powers) # on the little endian Linux platforms I tested but on ppc64 and sparc64, # nqp::say(nqp::pow_n(10, 210)) returns 1.0000000000000001e+210 # (which I think is an error of 1 bit in the last place of the mantissa) # However, MinGW seems to be much worse, with errors of 4 or 5 bits. # # The obvious approach would be to implement the algorithm from MoarVM's pow_i, # but in NQP in nums: # while (exp) { # if (exp & 1) # result *= base; # exp >>= 1; # base *= base; # } # # however, *this* doesn't work because floating point rounding errors from # *some* multiplications happen to propagate, causing higher powers to be # inaccurate. (and less accurate than the pow() function). Unlike pow, IEEE # basic arithmetic is defined to be bit-perfect correct, but that definition # includes rounding, and that can't be avoided. # # After some head scratching, it turns out that for all powers of 10, there # exist *some* smaller powers of 10 that can be multiplied together to calculate # them, without rounding errors, but not in any pattern that can be expressed # algorithmicly. However, we can generate a lookup table that stores which # smaller powers to multiply, and if we ensure that one is always a "small" # power which we can construct accurately as integers, then we can iterate our # way to any power of 10. # # This code generates and verifies that table. The table is pasted into # sprintf.nqp, where there is an NQP implementation of pow10() # # See https://github.com/MoarVM/MoarVM/pull/1385 use nqp; # MoarVM decimal parsing is accurate. The platform's pow function might not be: my @truth = [1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, 1e20, 1e21, 1e22, 1e23, 1e24, 1e25, 1e26, 1e27, 1e28, 1e29, 1e30, 1e31, 1e32, 1e33, 1e34, 1e35, 1e36, 1e37, 1e38, 1e39, 1e40, 1e41, 1e42, 1e43, 1e44, 1e45, 1e46, 1e47, 1e48, 1e49, 1e50, 1e51, 1e52, 1e53, 1e54, 1e55, 1e56, 1e57, 1e58, 1e59, 1e60, 1e61, 1e62, 1e63, 1e64, 1e65, 1e66, 1e67, 1e68, 1e69, 1e70, 1e71, 1e72, 1e73, 1e74, 1e75, 1e76, 1e77, 1e78, 1e79, 1e80, 1e81, 1e82, 1e83, 1e84, 1e85, 1e86, 1e87, 1e88, 1e89, 1e90, 1e91, 1e92, 1e93, 1e94, 1e95, 1e96, 1e97, 1e98, 1e99, 1e100, 1e101, 1e102, 1e103, 1e104, 1e105, 1e106, 1e107, 1e108, 1e109, 1e110, 1e111, 1e112, 1e113, 1e114, 1e115, 1e116, 1e117, 1e118, 1e119, 1e120, 1e121, 1e122, 1e123, 1e124, 1e125, 1e126, 1e127, 1e128, 1e129, 1e130, 1e131, 1e132, 1e133, 1e134, 1e135, 1e136, 1e137, 1e138, 1e139, 1e140, 1e141, 1e142, 1e143, 1e144, 1e145, 1e146, 1e147, 1e148, 1e149, 1e150, 1e151, 1e152, 1e153, 1e154, 1e155, 1e156, 1e157, 1e158, 1e159, 1e160, 1e161, 1e162, 1e163, 1e164, 1e165, 1e166, 1e167, 1e168, 1e169, 1e170, 1e171, 1e172, 1e173, 1e174, 1e175, 1e176, 1e177, 1e178, 1e179, 1e180, 1e181, 1e182, 1e183, 1e184, 1e185, 1e186, 1e187, 1e188, 1e189, 1e190, 1e191, 1e192, 1e193, 1e194, 1e195, 1e196, 1e197, 1e198, 1e199, 1e200, 1e201, 1e202, 1e203, 1e204, 1e205, 1e206, 1e207, 1e208, 1e209, 1e210, 1e211, 1e212, 1e213, 1e214, 1e215, 1e216, 1e217, 1e218, 1e219, 1e220, 1e221, 1e222, 1e223, 1e224, 1e225, 1e226, 1e227, 1e228, 1e229, 1e230, 1e231, 1e232, 1e233, 1e234, 1e235, 1e236, 1e237, 1e238, 1e239, 1e240, 1e241, 1e242, 1e243, 1e244, 1e245, 1e246, 1e247, 1e248, 1e249, 1e250, 1e251, 1e252, 1e253, 1e254, 1e255, 1e256, 1e257, 1e258, 1e259, 1e260, 1e261, 1e262, 1e263, 1e264, 1e265, 1e266, 1e267, 1e268, 1e269, 1e270, 1e271, 1e272, 1e273, 1e274, 1e275, 1e276, 1e277, 1e278, 1e279, 1e280, 1e281, 1e282, 1e283, 1e284, 1e285, 1e286, 1e287, 1e288, 1e289, 1e290, 1e291, 1e292, 1e293, 1e294, 1e295, 1e296, 1e297, 1e298, 1e299, 1e300, 1e301, 1e302, 1e303, 1e304, 1e305, 1e306, 1e307, 1e308]; # First, figure out what pairs of smaller values we can multiply to get each # power of 10, one of which will between 1e1 and 1e15 my @results; # 10 ** $hop-max must be exactly representable as a num. So max max would be 22 # (for the mantissa of an IEEE double), but as the code we're building this for # is doing the calculation in 64 bit integers, it's actually 19. my $hop-max = 15; my $pow-max = 308; for $hop-max + 1 .. $pow-max -> $pow { my $want = @truth[$pow]; for 1 .. $hop-max -> $hop { my $from = $pow - $hop; my $have = @truth[$from] * @truth[$hop]; ++@results[$pow]{$hop} if $have == $want; } # say "$pow => " ~ @results[$pow].raku; } # Then figure out the fewest multiplies needed to get to each power of 10 in the # forwards direction. # each index gets a score (hops) my @score; # and an offset to the next value to use (or 0 for finished) my @offset; # As these values are in our array of multipliers, set them to "finished": for 0 .. $hop-max -> $i { @score[$i] = 0; @offset[$i] = 0; } for $hop-max + 1 .. $pow-max -> $pow { # I don't think that the order matters if we do this forwards or backwards # (the scores are identical), but the generated table *looks* more intuitive # if it favours larger hops. for (1 .. $hop-max).reverse -> $hop { next unless @results[$pow]{$hop}; my $would-score = @score[$pow - $hop] + 1; next unless $would-score < (@score[$pow] // 999); @score[$pow] = $would-score; @offset[$pow] = $hop; } die "No route to generate 10**$pow - \$hop-max is $hop-max - is this too low?" unless defined @score[$pow]; } my @pows = [ map { 1e1 ** $_ }, 0 .. $hop-max ]; sub pow10(int $pow) { return nqp::inf() if $pow < 0 || $pow > @offset.elems; my @factors; my int $i = $pow; loop { my $hop = @offset[$i]; if (!$hop) { my num $result = @pows[$i]; # say $i ~ ": " ~ @factors.raku; $result *= @pows[$_] for @factors.reverse; return $result } push @factors, $hop; $i -= $hop; } } my $errors; for 0 .. $pow-max -> $pow { my $have = pow10($pow); my $want = @truth[$pow]; if ($have != $want) { ++$errors; say "$pow: $have != $want"; } } die "$errors error(s)" if $errors; say @offset.raku;